
Copyright© iDeskCentric Inc. - i -

iReasoning SNMP Agent Builder

User Guide

Copyright © 2002-2016 iDeskCentric Inc, All Rights Reserved.

The information contained herein is the property of iDeskCentric Inc. This document may not be
copied, reproduced, reduced to any electronic medium or machine readable form, or otherwise
duplicated, and the information herein may not be used, disseminated or otherwise disclosed, except with
the prior written consent of iDeskCentric Inc.

Table of Contents
INTRODUCTION .. 2

About this document ... 2
Target Audience .. 2

INSTALLATION ... 3
Requirements ... 3
Installation Procedures ... 3

USING iREASONING SNMP AGENT BUILDER ... 5
Overview and Architecture .. 5
Master/Subagent Architecture .. 6
Integration with other SNMP Agents ... 8
Security Mechanisms .. 11
MibGen Usage ... 13
MibGen Command Line Tool .. 21
Code Generation ... 22

Ø Automatically Generated Code ... 22
Ø Add Your Own Implementations .. 23

Dynamic Row Creation And Deletion ... 24
Example 1: Build A Simple MIB-II Agent ... 25
Example 2: Build A Simple Master Agent .. 30
Example 3: Build A Simple Subagent ... 30
Advanced Example: Build A Multihomed Agent Using Master/Subagent architecture ... 31
Configuration .. 34

Ø Logger configuration .. 34
Ø Agent configuration .. 35
Ø Agent configuration Example ... 48

Example Code .. 50
RESOURCES AND REFERENCE .. 58
GLOSSARY OF TERMS ... 59

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 2 -

INTRODUCTION

About this document
he purpose of this document is to provide the reader with enough
knowledge to start developing SNMP agents using iReasoning's SNMP
agent builder. Some examples are provided to better illustrate the usage of
this product.

iReasoning SNMP Agent Builder is a toolset that greatly simplifies the
development of SNMP agents. It provides complete support for SNMPv1,
SNMPv2c and SNMPv3. This software was designed and implemented following
object-oriented methodology and recognized design patterns. These advantages,
combined with a highly optimized code base, make iReasoning SNMP Agent
Builder stand out from the competition.

Target Audience
This document is intended for users and engineers who are responsible for the
development of SNMP agents. A user of this software does not have to be an
expert in the field of network management. She or he should, however, be familiar
with basic SNMP concepts such as MIB structure and the SNMP operations GET
and GET_NEXT. Some basic knowledge of the Java programming language is
also required to understand code examples. This software is designed to minimize
the learning curve for users and achieve a given programming job with less code.
A new user should therefore find it quite easy to learn and master this product.

Chapter

1
T

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 3 -

INSTALLATION

Requirements
Ø JDK1.3 or a later version must be installed. You can download JDK from

the Orcale’s web site (http://java.com).

Ø At least 32MB memory

Installation Procedure
1. Download and unzip

Download iReasoning SNMP Agent Builder and unzip it to the desired
directory, for example C:\lib\iReasoning\agent.

The directory structure will look like this:

Directory Name Description

bin Contains the Windows
executable file (mibgen.exe)

javadoc Contains javadoc HTML files

examples Contains source code examples

config Contains configuration files

mibs Contains standard MIB files

lib Contains binary jar files

Note: For Windows operating systems, you can also download and run
setup.exe to install the packages.

Chapter

2

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 4 -

2. Set up CLASSPATH

To run the iReasoning agent builder, you need two jar files: snmpagent.jar
and ui.jar. snmpagent.jar is executable (i.e. you can type “java –jar
snmpagent.jar” on the command line to launch the agent builder).

To use the iReasoning agent builder, only snmpagent.jar needs to be added to
the CLASSPATH environment variable.

On Windows:

If the iReasoning SNMP Agent Builder is installed at
C:\lib\iReasoning\agent, use the command

set CLASSPATH=C:\lib\iReasoning\agent\lib\snmpagent.jar;%CLASSPATH%

On Unix/Linux:

If the iReasoning SNMP Agent Builder is installed at
/usr/local/ireasoning/agent, use the command

CLASSPATH=/usr/local/ireasoning/agent/lib/snmpagent.jar ; export CLASSPATH

3. Start the agent builder

On Windows, you can run mibgen.exe to start the agent builder.

On all platforms, you can run

java –jar snmpagent.jar

(Assuming that your current working directory is …/agent/lib/)

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 5 -

USING iREASONING
SNMP AGENT BUILDER

Overview and Architecture
iReasoning SNMP Agent Builder was designed and implemented using object-
oriented methodology and recognized design patterns. One of its design goals was
to minimize the effort expended in building SNMP agents. Most of the hard work
has therefore already been done in developing the base classes, and is hidden from
the users. For example, the developer does not have to worry about complexities
such as SNMPv3 engine auto-discovery, encoding and decoding, dynamic row
creation and deletion, and inter-table indexing. All this functionality and logic is
already built into the core library.

SNMPv1, SNMPv2c, and SNMPv3 (USM and VACM) are all completely
supported, so the user does not have to learn the underlying differences between
the three versions. A single unified interface is used to build SNMP agents for all
SNMP protocols.

The agent builder can create three different types of agent: a traditional monolithic
agent, a dedicated subagent, and a flexible master/subagent. Master/subagent
architecture is based on Agent eXtensibility (AgentX) technology, a standard
protocol that allows one to dynamically extend the managed objects in a node. This
protocol permits a single SNMP agent and several subagents to connect and
register several managed objects simultaneously, without having to interrupt the
management service. This makes the whole management system more flexible, as
each subagent can be closer to its managed information and the SNMP extensible
agent needs to be started only once. For details on the AgentX protocol, please
refer to RFC 2741.

Agent builder is built on Java Management Extensions (JMXTM 1) technology, a
standard for instrumenting manageable resources and developing dynamic agents.
Each MIB table and group is modeled as a standard MBean. An MBean (Managed
Bean) is a Java object that implements a specific interface and conforms to certain
design patterns. It encapsulates attributes and operations through their public

1. Agent Builder contains the JMX™ Technology. JMX and all JMX based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Chapter

3

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 6 -

methods, and exposes them to management applications according to standard
design patterns. Standard MBeans specify the public operations accessible to
SNMP clients. A GUI-based application, MibGen, automatically generates MBeans
for a specified MIB. When the agent starts up, it registers all MBeans with
MBeanServer. Upon receiving an SNMP request from a client, it employs a quick
search algorithm to find the corresponding MBean and delegates part of the task to
it. Developers do not have to learn about JMX in detail, but they must be aware
that only methods in the MBean interface are accessible from outside the agent.
Although MBean implementation classes have additional public methods, some of
them are not accessible to SNMP managers.

There is always a trade-off between performance and resource usage. The
performance of an agent can be improved by enabling a thread pool when
configuring the agent. The thread pool can handle requests and send traps so that
the agent does not get blocked during a long period of processing. Using a thread
pool requires more system resources, however, so it is not recommended for
resource-constrained systems.

The SNMP SET operation is transactional in nature, and the agent architecture
fully supports this feature. If a SET operation fails, the system will roll back to its
previous state and nothing will be changed.

Master/Subagent Architecture
The master/subagent architecture is based on AgentX, the first IETF standard-
track specification for extensible SNMP agents. Prior to its publication, users were
forced to either use non-standard solutions (SMUX, DPI, etc.) or run multiple
SNMP agents on different UDP ports. (The latter method generally uses proxies to
access all agents through a single UDP port.) Both approaches have problems. The
lack of a standard often required subagents to support multiple protocols if they
were to be used on different operating systems. Proxies are also not transparent,
and thus require more intelligence on the manager side.

Aside from these management problems, running multiple subagents on a device is
usually less costly than running an equivalent number of full-featured SNMP agents.
The AgentX protocol meets this need by providing a standard agent extensibility
solution. It allows multiple subagents to make MIB information transparently
available to SNMP management applications. It is also designed to be independent
of SNMP version. An AgentX subagent will work equally well with SNMPv1,
SNMPv2c and SNMPv3 master agents without any changes.

The AgentX protocol specifies a method for subagents to advertise to the master
agent that information for which they are willing to take responsibility. Each
AgentX subagent can operate in its own process space, providing a robust
alternative to multiple monolithic SNMP agents. A process can also use the
AgentX protocol to provide access to its internal state, which then becomes
available to the management station via SNMP. This last point is extremely
important, considering the ever-increasing complexity of server and application
processes. Without a standard means of accessing the current state and historical

Copyright© iReasoning Inc. - 7 -

data of server processes, large software systems would quickly become
unmanageable. By making this information available through AgentX, we can use
standard SNMP management tools to administer such software systems.

An AgentX SNMP environment consists of two types of processes: a master agent
and one or more subagents, communicating with each other over TCP. The master
agent speaks both AgentX and SNMP. It is the master's job to maintain a table
specifying which subagents are responsible for which MIB regions. When the
AgentX master receives a request via SNMP, it finds the subagent(s) responsible
for the requested MIB region and dispatches the appropriate AgentX requests. The
AgentX subagents are responsible for providing access to management
information. When a subagent is started, it contacts the master and registers the
various MIB regions for which it has information.

SNMP
Manager

GET/SET/GET
NEXT/GET BULK

TRAP

Master
Agent

Sub-
Agent

Sub-
Agent

GET/SET/

GET BULK/TRAP

GET/SET/GET NEXT

GET BULK/TRAP

AgentX over TCP

AgentX over TCP

SNMP over UDP

SNMP over UDP

SNMP Agent

GET/SET/GET NEXT

GET BULK/TRAP

Port 161

Port 705

Port 162

Port 705

Master/Subagent architecture

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 8 -

Integration with other SNMP Agents
Two SNMP agents cannot both use the same IP address and port on a single
machine, so in some cases you will have to integrate your agent with an existing
SNMP agent. There are three ways to integrate it with other agents: through
AgentX technology, by assigning a proxy agent, and by using a Windows SNMP
extension agent. The choice is irrelevant to SNMP managers, which cannot tell
whether query results come from the master agent, its subagents, or proxied agents.

Ø AgentX technology

If the existing agent supports AgentX, you can make it the master agent
and your agent its subagent or vice versa. If your agent is already a
subagent, you will need to add code to register it with the master agent.

Ø Proxy Agent

If the existing agents do not support AgentX, you can make your agent act
as their proxy. In the config file, you first define which OID subtrees are
will be handled by other agents. The proxy agent then delegates any SNMP
requests falling under those subtrees to appropriate agents and handles all
other requests itself. This is also an easy way to upgrade legacy agents to
support SNMPv2/v3. Legacy agents usually only support SNMPv1, which
is far less efficient and secure than SNMPv2/v3. If a proxy agent is placed
in front of the legacy agent, it instantly becomes an agent supporting all
SNMP versions. What’s more, the proxy agent can be easily configured to
different security levels.

Ø Windows SNMP Extension Agent

The SNMP extension agent is only available on Windows platforms. The
library bin/subagent.dll serves as a bridge between the Windows native
SNMP service and your Java agent. Your Java agent has to run on a port
other than port 161 if it is on the same machine as the Windows SNMP
service. subagent.dll communicates with the Java agent via standard SNMP
protocol and returns results to the Windows SNMP service. A GUI tool
(Tools/Windows Extension Agent menu) is supplied for configuring
extension agents. When the Windows SNMP service receives a SNMP
request falling under the subtrees handled by the Java agent, it will delegate
the request to subagent.dll. subagent.dll will then forward it to the Java agent
for processing. After the Java agent finishes processing, it sends the result
back to the Windows SNMP service via subagent.dll, which then returns the
result to the SNMP request sender. The SNMP manager is thus not aware
of the existence of the Java agent; it only communicates with the Windows
SNMP service.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 9 -

The following two case studies demonstrate the usage of proxy agents.

Case one:

Your agent will run on a UNIX machine, which already has an agent
running on port 161. You do not want to implement MIB-II again,
preferring instead to make the existing agent provide MIB-II information.
If you want your agent to run on port 161, the existing agent must be
reconfigured to run on another port (in the example, we choose port 200).

In this case, the following proxy entry needs to be added to the config file.

<proxy
 ipAddress="127.0.0.1"
 port="200"
 included="yes"
 subTree=".1.3.6.1.2.1"
 timeout="5000"
 readCommunity="yourReadCommunity"
 writeCommunity="yourWriteCommunity"
/>

Case Two:

Your agent will run on a UNIX machine, which already has an agent
running on port 161. You only want your agent to implement a specific
MIB subtree, for example 1.3.1.4.15145.10, so all other SNMP requests
will be handled by the existing SNMP agent. If you want your agent to run
on port 161, the existing agent needs to be reconfigured to run on another
port (again, we use port 200 in this example).

In this case the following proxy entry needs to be added to the config file.
The most important difference between this case and case one is that the
included parameter is set to “no” instead of “yes”.

<proxy
 ipAddress="127.0.0.1"
 port="200"
 included="no"
 subTree=".1.3.1.4.15145.10"
 timeout="5000"
 readCommunity="yourReadCommunity"
 writeCommunity="yourWriteCommunity"
/>

Case Three: Integration with Windows built-in SNMP service

§ subagent.dll will serve as a bridge between the native Windows
SNMP agent and your Java agent. You can use the GUI found
under “Tools/Windows Extension Agent” to set up the extension
agent. The advantage of this approach is its seamless integration

Copyright© iReasoning Inc. - 10 -

with the Windows SNMP service; no change to the SNMP service
is needed.

§ As in cases one and two, it is a little tricky to configure the
port number of the Windows SNMP agent. Because a
Windows SNMP agent runs on port 161 by default, it needs to
be changed to another port number (such as 200). Then the
Java SNMP agent can take port 161.

To change the Windows SNMP agent port number, open this file:

C:\WINNT\system32\drivers\etc\services

Find the following line,

snmp 161/udp #SNMP

and change 161 to a new port number. Then restart the SNMP
agent service.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 11 -

Security Mechanisms
Ø Community-based access control for SNMPv1/v2c

You can specify multiple community strings for read and write operations
in the SnmpAgent.xml config file. These community strings will only apply
to SNMPv1/v2c.

Ø USM and VACM for SNMPv3

SNMPv3 provides much more sophisticated security mechanisms,
implementing a user-based security model (USM) and a view-based access
control model (VACM). This allows both authentication and encryption of
the requests sent between agents and their managers. Please refer to the
“Configuration” section of this manual for details on implementing these
security mechanisms in the config file.

Ø IP-based access control for SNMP managers

You can grant access rights only to certain manager hosts by adding IP
addresses or host names to the managerIpAddresses field in the config file. If
this field is empty, all hosts are granted rights to access the agent.

managerIpAddresses is a comma-separated list of hosts, each of which can be
expressed in any of the following forms:

• A numeric IP address, such as 192.168.2.20,

• A host name, such as server.somewhere.com,

• Or CIDR format subnet notation, such as A.B.C.D/16. For example:

192.168.1.0/24 would include all addresses between 192.168.1.0 and
192.168.1.255,

192.168.1.0/25 would include all addresses between 192.168.1.0 and
192.168.1.127,

and 192.168.1.128/25 would include all addresses between
192.168.1.128 and 192.168.1.255.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 12 -

Ø IP-based access control for subagents

To prevent unauthorized subagents from connecting and registering, the
master agent can restrict subagent access by adding the IP addresses of
authorized subagents to the subagentIpAddresses field in its configuration file.
If this field is empty, all hosts are granted the right to connect to the master
agent.

subagentIpAddresses has exactly the same format as managerIpAddresses (see
above).

Ø Encrypted community names and passwords in the config file

Sensitive data such as community names and passwords can be optionally
encrypted in the config file. See the “Configuration” section of this manual
for details.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 13 -

MibGen Usage
MibGen is a GUI tool for generating the code stubs of an SNMP agent. It can also
be used to compile and run the generated code.

Ø Main window

On this panel, the user can enter the following options for Java code generation:

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 14 -

Package Name The package name of generated java classes.

MibGen Output
Directory

The target directory for generated java code.

MIB Files MIB files, separated by commas or semicolons.

Additional Classpath Additional .jar files can be specified here for compilation
and execution purposes.

Compiler output directory The target directory for compiled Java classes. If this field
is empty, the MibGen output directory will be used.

ObjectName Domain The format of an object name is
“domain:name=value,...”. This field sets the domain
component of all object names.

Prefix class member
variables with “_”

If selected, all class member variables will start with an
underscore.

Generate preSet methods If selected, a preSetFoo() method will be generated for every
setFoo() method.

Add SnmpPdu object to
getter/setter *

If selected, each getter/setter method will be given an
SnmpPdu parameter. This option is not recommended in
most cases, because a SnmpPdu object is not usually
necessary.

Use SnmpDataType If selected, all the table/group classes use subclasses of
SnmpDataType as member variables. For example:
 public class IfEntry extends SnmpTableEntry{
 protected SnmpInt _ifIndex = new SnmpInt();
 protected SnmpOctetString _ifDescr = new SnmpOctetString();

If not selected, SnmpInt is represented as int, and
SnmpOctetString is represented as String.

Agent Type* Choose what kind of agent to create.

Merge with existing code If this option is selected, MibGen will attempt to generate
Java code that merges with existing code instead of
overwriting it. For example, if you add a new column to
an existing MIB table and regenerate the Java code, your
old code for the table and its entry classes will be
preserved. Methods corresponding to the new column will
simply be added to the table and entry classes.

Results A text area for displaying action output.

Copyright© iReasoning Inc. - 15 -

* “Add SnmpPdu object to getter/setter” notes:

If this option is selected, each getter/setter method will be given an SnmpPdu
parameter as was the case in versions prior to 4.x. For example, the getSysDescr
method in the SystemGroup class will look like this:

 public String getSysDescr(SnmpPdu pdu)

The pdu object contains information about the SNMP request, which is
sometimes necessary to generate a response.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 16 -

If this option is not selected, the SnmpPdu parameter will be omitted in each
getter/setter method and the above example will instead look like this:

 public String getSysDescr()

The object names of the classes should contain “noPdu=true”. For example, the
object name of the system group class is
"ireasoning:name=SystemGroup,noPdu=true".

* “Agent Type” notes:

Ø Standard: a monolithic agent, which handles all MIB views and SNMP
requests.

Ø Master and subagent: the agent can handle SNMP requests as well as
AgentX requests. It can also act as a subagent, connecting to another
master agent.

Ø Subagent only: the agent can only serve as a subagent, and cannot handle
SNMP requests directly. SNMP requests must be forwarded from the
master agent.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 17 -

Ø File Menu

Current settings can be saved to a project file, so that next time you do not have to
re-enter options. When the agent builder starts up, it automatically loads the
previous project file. Clicking on “New Project” will reset all the fields.

Ø Run Menu

Generate Agent Classes Start generating Java source code for the
agent

Compile Project Use javac to compile the generated Java
code

Run Agent Start the agent at port 161. Make sure
this port is not taken by other programs
first.

Stop Agent Stop running the agent process

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 18 -

Ø Tools Menu

• Windows Extension Agent

This dialog window is used to configure a Windows SNMP extension agent. The
Windows Registry will be updated after you click on the “Ok” button, but no java
code will be generated. You still need to use the main window to generate a Java
agent and make it run on the port specified in the “Agent Port Number” field.
When the Windows SNMP Service and Java agent are both running, the former
will delegate to the Java agent all SNMP requests falling under the subtrees
specified in the following window:

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 19 -

Enable Extension
Agent

Select “Yes” to enable the extension agent, and “No” to
disable it.

Warning: This option may interfere with your Windows SNMP
service if the extension agent is not correctly configured.

Agent Ip Address Enter the IP address of your Java SNMP agent. The Java agent
does not have to be on the same machine as the windows
SNMP service.

Agent Port Number Enter the port number of your Java SNMP agent. Because
port 161 is already taken by the Windows SNMP service, you
have to choose another port if the Java agent and Windows
SNMP service are on the same machine.

Read Community Read community name of your Java SNMP Agent.

Write Community Write community name of your Java SNMP Agent.

Subtrees One or more OID subtrees to be supported by your Java
agent, separated by commas.

DLL Path The path name of subagent.dll. By default, subagent.dll is located
in the bin directory. You can, however, move subagent.dll to
another directory.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 20 -

• MIB Browser

This dialog window provides a tool for browsing MIBs and querying SNMP agents.
Refer to http://www.ireasoning.com/mibbrowser.shtml for more details on its
usage.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 21 -

MibGen Command Line Tool
MibGen can also be run from the command line.

Usage:

On Windows:

mibgencmd.bat projectFile

On Unix/Linux:

sh mibgencmd.sh projectFile

projectFile can be created using the MibGen GUI. Enter all the necessary fields and
then click on “File/Save Project” in the menu to save it to a project file.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 22 -

Code Generation
Ø Automatically Generated Code

After clicking on the “Generate Agent Classes” menu item, the following
files will be generated under the specified directory.

README.txt Contains a simple description of the
generated classes

config/SnmpAgent.xml The XML config file, which can be
customized later. See the
“Configuration” chapter of this manual
for more details

Agent.java The main class for starting the agent

AgentMib.java A class for registering MBeans

OIDTree.java A tree representation of the MIB

MBeans and their
implementation classes

MBeans representing MIB objects

OIDTree.java is not intended to be modified by users, because it is a tree
representation of the MIB. If there are any changes in the MIB, the
OIDTree class will need to be regenerated by the agent builder.

AgentMib.java registers the necessary MBeans. If you only plan to
implement a subset of the MIB, you can save resources by commenting
out MBean registration statements in the registerMBeans method.

Agent.java is the main agent class. It starts the agent and listens for
requests on a specified UDP port. You can initialize MIB objects by adding
code to this class.

The agent builder generates MBeans and their implementation classes for
tables and groups. For example, if an agent implements MIB-II,
SystemGroup.java and SystemGroupMBean.java will be generated for
systemGroup. Similarly, IfTable.java and IfTableMBean.java will be generated
for ifTable. MBean interfaces map exactly to the MIB SMI definitions, and
should not be modified by users. The implementation classes of an MBean
interface may have more getter or setter methods than the interface itself,
but these extra methods are not accessible to the SNMP manager. Only
getter and setter methods declared in an MBean interface can be accessed
by the SNMP client. The user can add logic to the implementation classes
so that the agent can correctly respond to client requests.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 23 -

Ø Add Your Own Implementations
After automatic code generation, you can add your own code to MIB
groups and tables to customize the behavior of the agent. In this case the
config file (SnmpAgent.xml) may also need to be customized to suit your
needs. Let’s take a look at some simple examples:

o Scalar variables

For the MIB-II system group, we want to return the sysDescr MIB object
value. We just need to add some code to SystemGroup.java, which has
already been generated by the agent builder.

 public synchronized String getSysDescr()
 {
 if(this._sysDescr.length() == 0)
 {
 this._sysDescr = System.getProperty("os.name") + " " +
 System.getProperty("os.arch") + " " +
 System.getProperty("os.version");
 }//New code
 return this._sysDescr;
 }

Now when the agent receives an SNMP GET request with OID sysDescr.0,
it will be delegated to the getSysDescr method given above. The returned
value of getSysDescr will be used in the response sent back to the SNMP
manager.

o Tabular variables

We want to add code to the MIB-II ifTable to return all current system
interfaces. IfTable.java should be modified as follows:

 public IfTable (OIDTreeNode root, String oid, Object[] args)
 {
 super(root, oid);
 addInterfaces();
 }
 private void addInterfaces()
 {
 _netifs = Util.ipconfig();
 for (int i = 0; i < _netifs.size() ; i++)
 {
 NetInterface netif = (NetInterface) _netifs.get(i);
 int index = i + 1;

 IfEntry entry = new IfEntry(this, index ,
netif.descr,

netif.physAddress)
addRow(entry);
_ipAddrMap.put(netif.ipAddress, "" + index);

 }
}
public String getIfIndex(String ipAddress)
{
 return (String) _ipAddrMap.get(ipAddress);
}

The IfTable class constructor calls the addInterfaces() method, which collects
interface information and adds table rows. To add a row, a new entry

Copyright© iReasoning Inc. - 24 -

instance first needs to be created and then added to the table by calling
addRow(SnmpTableEntry). If addRow(SnmpTableEntry) is not called, this row
will not take effect and the SNMP manager will not be able to see it. When
the agent receives a SNMP GET request with OID ifIndex.1, it will be
delegated to the IfTable.getIfIndex(...) method. The returned value of
getIfIndex will be used in the response sent back to the SNMP manager.

For more information you can take a look at the MIB-II and IF-MIB agent
implementations, which are located in ./examples/agent. These two
examples demonstrate how to create agents that gather static and dynamic
system information, and how to handle inter-table indexing and dynamic
tables.

Dynamic Row Creation and Deletion

Dynamic row creation and deletion are automatically handled in the
SnmpBaseAgent class; there is no need to add any of your own code. The
corresponding MIB table must have a RowStatus or EntryStatus column.

You can customize the preAddRow and preDeleteRow methods of table classes
(subclasses of SnmpTable) to disable dynamic row creation and deletion.

The IF-MIB sample agent (located in the directory examples/agent/ifmib)
implements two dynamic tables: ifStackTable and ifRcvAddressTable. Beause these
two tables are dynamic, we can create and delete table rows on the fly.

For example, to create a row using the SNMP SET operation (assuming that
the IF-MIB agent is running on localhost) you can write:

java snmpset localhost .1.3.6.1.2.1.31.1.2.1.3.2.2 i 4
(to create a row for ifStackTable), and

java snmpset localhost .1.3.6.1.2.1.31.1.4.1.2.5.6.0.160.204.232.63.205 i
4 .1.3.6.1.2.1.31.1.4.1.3.5.6.0.160.204.232.63.205 i 1
(to create a row for ifRcvAddressTable).

To delete a row using the SNMP SET operation you can write:

java snmpset localhost .1.3.6.1.2.1.31.1.4.1.2.5.6.0.160.204.232.63.205 i 6

(to delete the row just created in ifRcvAddressTable)

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 25 -

Example 1: Build a Simple MIB-II Agent
Now we demonstrate how to build a simple agent for a subset of MIB-II,
implementing the system group and tcpConnTable. As MIB-II is defined in the file
RFC1213-MIB, we first need to load that MIB into MibGen.

Ø Step 1: Code generation

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 26 -

In this screen, we specify the package name for generated classes to be
“agent.mib2”. Java source code will be generated in the “C:\projects” directory.
The MIB file to be used is RFC1213-MIB. The agent will be a traditional SNMP
agent without master/subagent support.

The relevant files generated by MibGen are:

§ Agent.java : Agent main class
§ AgentMib.java : Class for registering MBeans
§ OIDTree.java : Tree data structure representing the MIB
§ SystemGroup.java : Class representing the System group
§ SystemGroupMBean.java : MBean interface for the System group
§ TcpConnEntry.java : Class representing a row in tcpConnTable
§ TcpConnTable.java : Class representing tcpConnTable
§ TcpConnTableMBean.java : MBean interface for tcpConnTable
§ ...

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 27 -

Ø Step 2: Remove unused MBeans

MibGen generates MBeans for each table and group node in the MIB tree. In this
example we only implement a subset of MIB-II, so we should only register relevant
MBeans in order to save memory. In the registerMBeans method of the AgentMib
class, we can comment out unnecessary registrations. Although these classes still
exist, they will not be loaded into memory.

 public static void registerMBeans(MBeanServer server, OIDTreeNode root)
 {
 ...
 try
 {
 registerSystemGroup(); // System group
 registerTcpConnTable(); // tcpConnTable

 //registerIpAddrTable();
 //registerIfTable();
 //registerInterfacesGroup();
 // registerSnmpGroup();
 // registerUdpGroup();
 // registerTcpGroup();
 // registerEgpGroup();
 // registerIpGroup();
 // registerIcmpGroup();
 // registerAtTable();
 // registerIpRouteTable();
 // registerIpNetToMediaTable();
 // registerUdpTable();
 // registerEgpNeighTable();
 }
 ...
 }

Ø Step 3: Add system group implementation

Here we implement methods for returning the values of the sysDescr, sysName and
sysUpTime MIB objects. In the SystemGroup class, add :

 public synchronized String getSysDescr()
 {
 if(this._sysDescr.length() == 0)
 {
 this._sysDescr = System.getProperty("os.name") + " " +
 System.getProperty("os.arch") + " " +
 System.getProperty("os.version");
 }
 return this._sysDescr;
 }
 public synchronized String getSysName()
 {
 if(_sysName.length() == 0)
 {
 try
 {
 _sysName = (java.net.InetAddress.getLocalHost()).getHostName();
 }
 catch(java.net.UnknownHostException e)
 {
 _sysName = “”;
 }
 }
 return this._sysName;
 }
 public synchronized SnmpTimeTicks getSysUpTime()
 {

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 28 -

 return new SnmpTimeTicks(SnmpBaseAgent.getSysUpTime());
 }

Ø Step 4: Add tcpConnTable implementation

In the TcpConnTable class constructor, we want to get current TCP connections and
add each of them as a row in the table. There is no way to get current TCP
connections with pure Java code, so we make use of the “netstat” shell command
on Windows and parse its output to retrieve information on current connections.
The parsing code is in the Util.java class. Here we only show how to create rows;
you can refer to the complete source code in the MIB-II example for more details.

 public TcpConnTable (OIDTreeNode root, String oid, Object[] args)
 {
 super(root, oid);

 //Make use of “netstat” command to get connections, results are stored in an ArrayList object
 ArrayList conns = Util.netstat();

 for (int i = 0; i < conns.size(); i++)
 {
 Connection conn = (Connection) conns.get(i);

 //Create a row based on the connection information
 TcpConnEntry entry = new TcpConnEntry(this, conn.state, new SnmpIpAddress(conn.srcIp),
 conn.srcPort, new SnmpIpAddress(conn.destIp), conn.destPort);

 //Add row to table
 addRow(entry);
 }
 }

Ø Step 5 (Optional) : Send traps/informs

The super-class of the agent (SnmpBaseAgent class) provides static methods for
sending SNMPv1/v2c/v3 traps. Traps are sent to all the trap sinks specified in the
config file.

In this example, we send a coldStart trap when the agent starts up.

In the agent class, add:

 public static void main(String[] args)
 {
 try
 {
 ...
 Agent agent = new Agent(configFile);

 //send SNMPv2 coldStart trap to all trapsinks
 sendV2ColdStartTrap();
 }
 ...
 }

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 29 -

Ø Step 6: Modify the config file

MibGen creates a default config file for you, Which allows you to set the version
number, community names, trap sinks, and much more. Please refer to the
“Configuration” section of this manual for details on modifying the config file.

More details can also be found in the “mib2” example.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 30 -

Example 2: Build a Simple Master Agent
Building an SNMP master agent is quite similar to building a standard agent.
During step 1, we choose “Master and subagent” instead of “Standard agent” in
the “Agent Type” field of the MibGen GUI. The generated agent class will be an
extension of SnmpAgentX rather than SnmpBaseAgent. The remaining steps are
almost the same.

The master agent needs to start a TCP server socket on the port specified in the
config file so that subagents can connect to it. Here is an example:

 In Agent class:

 public static void main(String[] args)
 {
 try
 {
 ...
 Agent agent = new Agent(configFile);

 //Starts master agent, using port number specified in config file
 agent.startMasterAgent();
 }
 ...
 }

Please examine the “master” example for more details. In that example, IF-
MIB is used as the MIB.

Example 3: Build A Simple Subagent
Building a subagent is quite similar to building a standard agent. During step 1, we
choose “Subagent Only” instead of “Standard agent” in the “Agent Type” field of
the MibGen GUI. The generated agent class will be an extension of SnmpAgentX
rather than SnmpBaseAgent. After starting up, the subagent needs to connect to the
master agent and register its MIB subtrees.

The following code shows how to connect to the master agent and register
subtrees. More details can be found in the subagent class example.

 //connect to master agent
 SubAgentSession session = agent.connect(host, port);

 //To register OID subtrees ...

 //Register InfoGroup subtree
 int ret1 = session.register(".1.3.6.1.4.1.15145.1.1.1"); //InfoGroup
 //Register Subagent table
 int ret2 = session.register(".1.3.6.1.4.1.15145.1.1.2"); //SubagentTable

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 31 -

The subagent does not usually send traps directly to the SNMP manager.
Instead, it forwards traps to the master agent, which then sends them to the
SNMP manager. So sendV1Trap, sendV2Trap, and other similar methods of
SnmpBaseAgent cannot be used. The subagent should instead call the
SubagentSession.sendTrap method to send traps to the master agent.

The “subagent” example provides additional details, using Subagent.mib as its
MIB file.

Advanced Example: Build a Multihomed Agent
Using Master/Subagent Architecture
The goal is to build an SNMP agent with the following requirements:

The machine has three IP addresses: A, B and C. If the SNMP manager
queries ifTable against address A, the SNMP response should only contain
network interface information on address A. If the SNMP manager
queries ifTable against address B, the SNMP response should only contain
network interface information on address B. If, on the other hand, the
SNMP manager queries ifTable against address C then the SNMP response
should contain network interface information for both A and B.

Our solution is to build a master agent bound to address C and two subagents
bound to addresses A and B. All three agents can reside in one JVM. When the
program starts up the master agent will be started first, followed by the two
subagents which connect to the master agent and register their own ifTable rows.

The complete code for this example is located under examples/agent/multihome.
Here we describe the steps required to build this agent.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 32 -

1. Use MibGen to generate the master agent code.

The domain name used here is “master”, but you can pick a different name.
The only restriction is that each of the three agents must have a unique domain
name.

2. Generate code for the two subagents.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 33 -

Although they serve as subagents for the master agent, they must also be able
to process SNMP requests from the manager directly. We therefore still choose
“Master and Subagent” for the “Agent Type”.

The domain names given to the two subagents are “interface1” and
“interface2”.

3. In the agent.multihome.AgentMib class, comment out all unnecessary
registerXXX() methods in the registerMBeans method, and all unregisterXXX()
methods in the unregisterMBeans method. The master agent does not have
its own OID tree; all OID trees will be from the subagents.

4. To avoid name conflicts, rename the agent.multihome.interface1.Agent class to
If1Agent and agent.multihome.interface2.Agent to If2Agent. Their constructors
will need to be changed as well.

5. Add table rows to both subagents by modifying the
agent.multihome.interface1.IfTable and agent.multihome.interface2.IfTable classes.

6. Add the following implementation code to the main method:

 public static void main(String[] args)
 {
 ...
 String configFile = "config\\MultiHomeSnmpAgent.xml";
 Agent agent = new Agent(configFile);
 agent.startMasterAgent();
 //Now start two subagents and connect them to master agent
 If1Agent if1agent = new If1Agent ("config\\If1SnmpAgent.xml");
 SubAgentSession session1 = if1agent.connect("localhost", 705);
 //register first row of ifTable
 session1.register(OIDTree.IFENTRY + ".1.1" , 10, 22, 30);

 If2Agent if2agent = new If2Agent ("config\\If2SnmpAgent.xml");
 SubAgentSession session2 = if2agent.connect("localhost", 705);
 //register second row of ifTable
 session2.register(OIDTree.IFENTRY + ".1.2" , 10, 22, 30);
 ...
 }

7. Modify the config files. The ipAddress field value in the master agent’s
config file should be address C. The ipAddress field values of the two
subagent config files should be addresses A and B.

8. Run the master agent. Now you can issue SNMP queries against addresses
A, B and C, and see the results!

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 34 -

Configuration
Config files are located in the ./config directory by default. You can, however, add
a Java environment variable to set a new config directory. For example,

java -Dcom.ireasoning.configDir=d:\agent\config …

will make “d:\agent\config” the new config directory.

Ø Logger configuration
The logger is configurable through the Logger.prop file located in the ./config
directory. You can change the logging level, or just disable the logger
altogether. The output stream of logging messages is also configurable to
either standard out or a named file. Logger.prop has detailed information on the
available options.

The popular open source tool log4j is also supported. To switch to the log4j
logger, add one line of code to the beginning of your program:

com.ireasoning.util.Logger.setUseLog4j(true);

If you are using log4j, the file Logger.prop will be ignored. You will need to
either configure the log4j logger manually or provide it with a new config file.
The logging methods from Logger can still be used, as they will be delegated
to the corresponding methods from log4j.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 35 -

Ø Agent configuration
Agent configuration is normally specified in an XML file called SnmpAgent.xml,
but configuration settings can also be stored in other sources such as
databases. (Please see examples/agent/DbConfig.java for an example of
storing settings in a database.) Such files should be put in the ./config
directory, the current working directory, or in the /resources directory of the
agent’s jar file. Alternatively, you can add an environment variable to tell the
agent where to find its config file.

The SnmpAgentConfig class is provided to manipulate the config file
programmatically. It provides methods to get/set/save values and methods to
add and delete trap sinks.

Ø properties section

The properties node defines some agent properties and initial values for MIB
variables. If a MIB object’s initial value is already specified in the config file, its
corresponding getter and setter methods in MBean’s implementation class will
not take effect.

Copyright© iReasoning Inc. - 36 -

Version The version number of this agent: 1 for SNMPv1, 2 for
SNMPv2c, or 3 for SNMPv3

encryptPassword-
AndCommunity

If set to “yes”, all the unencrypted communities and passwords
are changed to an encrypted format and saved to a file when the
agent starts. Changes can be made by replacing entries in the file
with a new, unencrypted value which will automatically be
encrypted again when the agent restarts. If set to “no”, values
will not be changed even if they're in encrypted format (but they
will still be decrypted by the agent). The length of communities
and passwords must be less than 32 characters in order to be
successfully encrypted.

readCommunity A comma-separated list of community names for the SNMP
GET/ GETNEXT/ GETBULK operations. If this value is
empty, no READ actions are allowed. All community names are
case insensitive.

writeCommunity A comma-separated list of community names for the SNMP
SET operation. If this value is empty, no SET action is allowed.
All community names are case insensitive.

maxPacketSize The maximum number of bytes in a packet. Note that the
maximum ethernet packet size is 1500 bytes.

useThreadPool If set to “yes”, a thread pool is used to improve performance.
This also means that more system resources will be needed by
the agent.

engineID The SNMPv3 engineID of this agent. If empty, the first IP
address found for the hostname of the machine will be used.

engineBoots The number of times the agent will reboot. Its value is updated
whenever the agent restarts under SNMPv3.

informTimeout The timeout value for the agent to send an INFORM request, in
milliseconds

informRetries The number of INFORM requests that will be sent after timeout if no
response is received.

reloadConfigOID The OID for reloading this file, which may be any integer. If the
SNMP manager issues a SET request using only this OID, it forces the
agent to reload the config file.

port The SNMP agent UDP port number. Its default value is 161.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 37 -

ipAddress The IP address of this agent, which is used as one of the fields in
SNMPv1 trap. The local IP address will be used if this field is
empty.

masterAgentPort This is the master agent TCP port number.

remoteMasterAgent-Port For subagents, this property specifies the remote master agent's
listening port.

remoteMasterAgent-
IpAddress

 For subagents, this property specifies the remote master agent's
IP address or host name.

subagentIpAddresses* A comma-separated list of authorized subagent IP addresses. An
empty value here means that all IP addresses are accepted.

managerIpAddresses* A comma-separated list of authorized SNMP manager IP
addresses. An empty value here means that all IP addresses are
accepted.

allowNonV3ReadRequest
sForV3Agent

If set to “yes”, an SNMPv3 agent will process SNMPv1/v2c
non-set requests (GET/GET_NEXT, GET_BULK). The
default value is “no”.

allowNonV3SetRequestsF
orV3Agent

If set to “yes”, an SNMPv3 agent will process SNMPv1/v2c
SET requests. The default value is “no”.

noCommunityNameCheck If set to “yes”, the agent will ignore community names in
checking permissions. The default value is “no”.

communityViewEnabled If set to “yes”, the community name is tied to views. The default
value is “no”. This option only takes effect if the agent is from a
version prior to SNMPv3.

system.sysObjectID This value is used as the Enterprise OID in an SNMPv1 trap.

system.sysLocation
system.sycContact
system.sysObjectID etc.

These are static values for MIB objects. Use the format
“GroupName.ScalarObject”. Their values will be updated and
saved if changed by SNMP SET. For example, if the
manager issues a SNMP SET request and changes sysContact
successfully, then the sysContact value in the config file will also be
updated and saved.

These values will overwrite corresponding methods in java
classes. For example, if system.sysLocation’s value is “building1”,
then the getSysLocation() method in the SystemGroup class will be
ignored; sysLocation will always have the value “building1”. For
that method to take effect, system.sysLocation needs to be deleted
from the config file.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 38 -

If the version number is 3, then the agent is an SNMPv3 agent. It will then
reject all SNMPv1/v2c requests for security concerns. If the version number is
2, however, the agent will still handle SNMPv1 requests.

The agent’s config file can be reloaded at run time. The SNMP manager sends
a SET request whose OID is the value of “reloadConfigOID”, and varbind’s
value can be any integer. Upon receiving this request, the agent will reload its
config file and re-initialize its internal states. For example, if reloadConfigOID’s
value is “.1.3.6.1.2.1.5000.1.0 ”, the SNMP manager can force the agent to
reload config with the following request.

java snmpset localhost .1.3.6.1.2.1.5000.1.0 i 1

To disable this feature, just leave reloadConfigOID blank in the config file.

* managerIpAddresses and subagentIpAddresses are comma-separated lists of
hosts, each of which can be expressed in any of the following formats:

• A numeric IP address, such as 192.168.2.20,

• A host name, such as server.somewhere.com,

• or CIDR format subnet notation, such as A.B.C.D/16. For example,

192.168.1.0/24 includes all addresses between 192.168.1.0 and
192.168.1.255,
192.168.1.0/25 includes all addresses between 192.168.1.0 and
192.168.1.127,
and 192.168.1.128/25 includes all addresses between 192.168.1.128
and 192.168.1.255.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 39 -

Ø trapSink section

This section defines the properties of trap receivers. An agent will send traps to
all defined trap receivers.

§ SNMPv1 and SNMPv2 TrapSink

Hostname The host name or IP address of the trap receiver

Port The port number of the trap receiver

Community The trap receiver’s community name

Version The trap receiver’s SNMP version number

isInform Set this parameter to “yes” to send SNMP INFORM
request instead of traps. INFORM requests are more
reliable than traps.

§ snmpV3TrapSink

Hostname The host name or IP address of the trap receiver

Port The port number of the trap receiver

isInform Set this parameter to “yes” to send SNMP INFORM
requests instead of traps

userName Set this parameter to one of the user names in the trap
receiver’s user list

Auth The authentication algorithm used, one of {MD5,
SHA, SHA224, SHA256, SHA384, SHA512}

authPassword An authentication password

Priv Privacy algorithm. Valid values are DES, AES, AES192,
and AES256. Default is DES.

privPassword A privacy password

In the snmpV3TrapSink section, the security level is determined by
authPassword and privPassword. If both are empty strings, the security level is set
to noAuthNoPriv. If only privPassword is empty, the security level is set to
authNoPriv. If neither of them is an empty string, the security level is set to
authPriv.

Copyright© iReasoning Inc. - 40 -

For example, assume that three trapsinks are defined: one SNMPv1, one
SNMPv2, and one SNMPv3. If the agent sends an SNMPv2 trap, it will be
sent to all three trapsinks. It will be converted to an SNMPv1 trap before it is
sent to the SNMPv1 trapsink. If the agent sends an SNMPv1 trap, it will be
converted to an SNMPv2 trap before being sent to the SNMPv2 and SNMPv3
trapsinks.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 41 -

Ø user section

This section defines the properties of authorized users.

Name User name. Two users cannot have same name.

auth The authentication algorithm used, one of {MD5,
SHA, SHA224, SHA256, SHA384, SHA512}.

authPassword Authentication password.

priv Privacy algorithm. Valid values are DES, AES,
AES192, and AES256. Default is DES.

privPassword Privacy password.

group The group that this user is associated with. A user can
only be associated with one group.

Unlike the snmpV3TrapSink node, the user’s security level is determined
by the security level of its group rather than the values of authPassword and
privPassword. If the security level is authNoPriv, then the privPassword field
will be ignored.

Copyright© iReasoning Inc. - 42 -

Ø group section

This section defines SNMPv3 group properties.

name Group name. Two groups cannot have same name.

securityLevel The group’s security level, which must be one of
{noAuthNoPriv, authNoPriv, authPriv}

match Context matching method, which must be set to either
“prefix” or “exact”. (See below)

contextPrefix If match is set to “prefix”, then context matching only
checks whether the context starts with the string
contextPrefix. If match is set to “exact”, then the context
must be exactly matched.

readView The view associated with this group for “READ”
operations such as GET, GETNEXT, and GETBULK.

writeView The view associated with this group for “WRITE”
operations such as SET.

notifyView The view associated with this group for notification
operations.

Note: SecurityLevel must be one of the set {noAuthNoPriv, authNoPriv,
authPriv}. “noAuthNoPriv” means that neither authentication nor
encryption is applied to packets. “authNoPriv” means that only
authentication is applied to packets. “authPriv” means that both
authentication and encryption are applied to packets. All users in a group
have the same security level.

Copyright© iReasoning Inc. - 43 -

Ø view section

This section defines the SNMPv3 VACM view properties.

name View name. Multiple views can have the same name, in
this case, the user tied to this view name is associated
with all of them.

type View type, which is set to either “included” or
“excluded”. A view subtree can be defined as either
including or excluding all the object instances that it
contains.

subTree Subtree OID. A subtree is a node in the MIB’s naming
hierarchy and all of its subordinate elements.

mask A list of ones and zeroes separated by '.' or ':'. A view
mask can be defined to reduce the amount of
configuration information required for fine-grained
access control. Each element in this bit mask specifies
whether or not the corresponding sub-identifiers must
match when determining whether an OBJECT
IDENTIFIER is in this family of view subtrees. Thus a
'1' indicates that an exact match must occur in that
element, and a '0' indicates that any sub-identifier value
matches (a 'wild card').

For example,

<view name = "view1"
 type = "included"
 subTree = ".1.3 "
 mask = ".1.1"
/>

defines a view named view1, which includes all tree nodes whose OIDs
start with “.1.3” To take another example,

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 44 -

<view name = "view1"
 type = "included"
 subTree = ".1.3.6.1.2.1"
 mask = ".1.1.1.1.1.0"
/>

defines a view which includes all tree nodes whose OIDs start with
“.1.3.6.1.2”. The last digit of the mask is 0, which means it does not care
about the subtree’s OID at that index. Here’s another example:

<view name = "view1"
 type = "included"
 subTree = ".1.3.6.1.2.1.7"
 mask = ".1.1.1.1.1.0.1"
/>

In this view, all OIDs matching .1.3.6.1.2.[1, 2, ...].7.* are included. The
character ‘*’ represents any series of valid integers separated by periods,
and the character ‘?’ represents any single valid OID subelement. Finally, in

<view name = "view1"
 type = "included"
 subTree = ".1.3.6.1.2.1"
 mask = ".1.1.1.0.1.0"
/>

all OIDs matching .1.3.6.?.2.* are included, such as “.1.3.6.1.2.1.*”,
“.1.3.6.2.2.1.*”, and “.1.3.6.3.2.2.*”.

Ø communityView section

This section defines the mapping between community names and view
names. It takes effect only if communityViewEnabled (in the Properties
section of the config file) is set to “yes”, and it only applies to
SNMPv1/v2c agents.

If a community name is tied to a view name, only the subtree(s) defined by
the specified view name will be visible to requests made under the
community name. Multiple views can have the same name, in this case, the
community name tied to this view name is associated with all of them.

community The community name, which must be unique.

readView View name for the read community.

writeView View name for the write community.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 45 -

Ø proxy section

When this agent serves as a proxy for other agents, this section defines
how SNMP requests are delegated.

ipAddress The IP address or host name of the agent being proxied.

port The listening port number of the agent being proxied.

included If set to “yes”, the agent being proxied handles the requests
falling under subTree. Otherwise, the agent being proxied
handles all requests except for those falling under subTree .
Only one proxied agent of the latter type is allowed in the
config file.

subTree Subtree OID(s). You can specify multiple subtrees,
separated by commas.

timeOut The timeout value before querying the agent being proxied,
in milliseconds.

version The SNMP version number of the agent. The prossible
values are {1, 2, 3}. The default value is 1.

readCommunity The community name for SNMP GET / GET_NEXT/
GET_BULK operations of the agent being proxied. This
value does not matter if version number is 3.

writeCommunity The community name for SNMP SET operations of the
agent being proxied. This value does not matter if version
number is 3.

userName (SNMPv3 property) SNMPv3 user name.

auth (SNMPv3 property) The authentication algorithm used,
one of {MD5, SHA, SHA224, SHA256, SHA384,
SHA512}.

authPassword (SNMPv3 property) Authentication password.

priv (SNMPv3 property) Privacy algorithm. Valid values are
DES, AES, AES192, and AES256. Default is DES.

privPassword (SNMPv3 property) Privacy password.

contextName (SNMPv3 property) SNMPv3 context name.

Copyright© iReasoning Inc. - 46 -

The following example defines an agent being proxied. Its IP address is
127.0.0.1, and it listens on port 200. All the requests falling under
subtree 1.3.6.1.2.1 will be handled by this SNMP agent instead of the
master agent.

<proxy
 ipAddress="127.0.0.1"
 port="200"
 included="yes"
 subTree=".1.3.6.1.2.1"

timeout="5000"
version=”1”

 readCommunity="yourReadCommunity"
writeCommunity="yourWriteCommunity"
userName=" "
auth=""
authPassword=""
priv=""
privPassword=""

/>

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 47 -

The following proxy section defines a different type of proxied agent.
Because included is set to “no” this agent handles all SNMP requests
except for those with OIDs falling under the subtrees .1.3.1.4.15145.10
and .1.3.1.4.15145.20, which are handled by the master agent itself.

<proxy
 ipAddress="127.0.0.1"
 port="200"
 included="no"
 subTree=".1.3.1.4.15145.10,

 .1.3.1.4.15145.20"
 timeout="5000"
 readCommunity="yourReadCommunity"
 writeCommunity="yourWriteCommunity"
/>

Ø trapProxy section

If the master agent also needs to forward traps sent from proxied agents,
you can add a trapProxy XML node to the config file. Only one trap proxy
can be defined in the config file.

The following example defines a trapProxy node that will start a trap
receiver listening on port 192. Traps received will be forwarded to all trap
sinks defined in the config file.

<trapProxy
 trapForwarderPort="192"
/>

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 48 -

Ø Agent configuration Example

Here is a sample complete agent configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<SnmpAgent>
 <properties
 version = "3"
 port = "161"
 readCommunity = "public"
 writeCommunity = "public,private"
 maxPacketSize = "4000"
 useThreadPool = "yes"
 engineID = "12345"
 engineBoots = "0"
 informTimeout = "1000"
 informRetries = "3"
 reloadConfigOID = ".1.3.6.1.2.1.5000.1.0"
 masterAgentPort = "705"
 ipAddresses = ""
 subagentIpAddresses= ""
 managerIpAddresses = ""
 system.sysLocation = "corporate drive"
 system.sysContact = "somebody@somewhere.com"
 system.sysObjectID = ".1.3.1.4.12345"
 system.sysServices = "72"
 />
 <trapSink
 hostname = "localhost"
 port = "162"
 community = "public"
 version = "2"
 isInform = "yes"
 />
 <user
 name = "newUser"
 auth = "MD5"
 authPassword = "abc12345"
 privPassword = "abc12345"
 group = "aGroup"
 />
 <group name = "aGroup"
 securityLevel = "authPriv"
 contextPrefix = ""
 match = "exact"
 readView = "view1"
 writeView = "view1"
 notifyView = "view1"
 />
 <view name = "view1"
 type = "included"
 subTree = ".1.3"
 mask = ".1.1"
 />
</SnmpAgent>

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 49 -

From the properties section, we can tell that this is an SNMPv3 agent listening
on port 161. It defines a user called “newUser”, who belongs to the group
aGroup. aGroup maps to view1, which allows access to the subtree “.1.3”
(meaning that all SNMP OIDs starting with “.1.3” are allowed). All of the
users in aGroup require the authPriv security level, so authentication and
privacy passwords are provided for the user “newUser”. Both passwords are
set to “abc12345”. Authentication uses the MD5 algorithm, and encryption
uses the “DES” algorithm (by default).

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 50 -

Example Code
Four agent examples are shipped with this product: MIB-II, IF-MIB, master agent,
and subagent. The first two examples demonstrate how to gather static and
dynamic system information, handle inter-table indexing, and manage dynamic
tables. The master and subagent examples demonstrate the master/subagent
architecture.

JAR files for these agents are also provided. To run the examples, type

java –jar mib2agent.jar ,

java –jar ifmibagent.jar ,

 and so on in the same directory as the .jar files.

To compile the examples, go to the examples directory and run compile.bat (under
Windows).

Because some of these agents make use of Windows-specific commands, it is
recommended to try them out on Windows NT/2000/XP.

The agent builder generated more than 98% of the code in these examples. To find
the manually added code, you can do a search for “New code” in the source
directory.

Ø MIB2 agent example

The MIB2 example implements the following MIB groups and tables:

 {system, interfaces, ipAddrTable, ifTable, tcpConnTable}

ipAddrTable only gathers static system information. tcpConnTable keeps
track of current TCP connection states, so its information needs to be
collected whenever the agent receives a new request asking for
tcpConnTable values.

Ø IF-MIB agent example

The IFMIB example implements the following MIB groups and tables:

 {interfaces, ifTable, ifXTable, ifRcvAddressTable}

ifXTable is an augmenting table of ifTable, meaning that it uses ifTable’s
index and there is a one-to-one mapping of rows between the two tables.
ifRcvAddressTable has dynamic rows, so you can issue an SNMP SET
command to add, delete or modify rows. ifRcvAddressTable also has a
dependent expansion relationship with ifTable; its index includes both
ifTable’s ifIndex and its own index (ifRcvAddressAddress).

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 51 -

Ø Master agent example

The master agent example is almost the same as the IFMIB example,
except it also has master agent functionality that can process subagent
requests. Its agent class is an extension of the SnmpAgentX class instead of
the SnmpBaseAgent class.

Ø Subagent example

This example can only be used as a subagent, but is otherwise similar to
other agent examples. The main difference is that its agent class is an
extension of SnmpAgentX instead of SnmpBaseAgent. Its MIB file,
Subagent.mib, is located in the same directory as its source code. It connects
to a local master agent and registers two subtrees: 1.3.6.1.4.1.15145.1.1.1
and 1.3.6.1.4.1.15145.1.1.2. A master agent needs to be started locally
before running this example.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 52 -

FAQ

Q. What's the difference between iReasoning SNMP Agent Builder and
SNMP API?
A. Agent Builder is a tool for SNMP agent development. SNMP API is for
SNMP manager application development.

Q. How does iReasoning SNMP Agent Builder differ from other agent
builder products?
A. Here are just some of its advantages over the competitors.

• It creates high-performance agents.
• It is the first Java SNMP product to support both DES and strong

128-bit, 192-bit and 256-bit AES encryption algorithms.
• It conforms to RFCs. Many competitors do not really understand

RFCs, and have incorrect implementations.
• It dramatically reduces the complexity of agent development. Most

complex agent functionalities are already built into the base classes.
• It supports master and subagent architecture based on standard

AgentX protocol.
• Its agents have a small footprint compared with other Java-based

SNMP agents.

Q. What are the key features of Agent Builder?
A.

• Complete support for SNMPv1, v2c, and v3 (USM and VACM).
• It supports master/subagent architecture based on AgentX technology.
• An intuitive GUI tool for automatic generation of Java source code

from MIBs.
• It greatly reduces the complexity of agent development. Many tricky

SNMP issues are hidden from developers.
• Many optimization techniques are employed to create high-

performance agents.
• It conforms to SNMP RFCs.
• Its agents have a small footprint.
• Easy-to-understand, XML-based configuration file format.
• It is re-configurable at run time.

Q. Do the SNMP security vulnerabilities reported by CERT affect
iReasoning Agent Builder?
A. The Finland Oulu University Secure Programming Group (OUSPG)
discovered numerous vulnerabilities in the SNMP implementations of many
different vendors. Vulnerabilities in the decoding and subsequent processing
of SNMP messages by managers and agents may result in unauthorized
privileged access, denial-of-service attacks, or cause unstable behavior.

Copyright© iReasoning Inc. - 53 -

iReasoning has investigated the impact of these vulnerabilities on our SNMP
agent builder and has found the following results:

• VU#107186 - Multiple vulnerabilities in SNMPv1 trap handling.
SNMP trap messages are sent from agents to managers. A trap
message may indicate a warning or error condition, or simply notify the
manager about the agent's state. SNMP managers must properly
decode trap messages and process the resulting data. OUSPG found
multiple vulnerabilities in the way that many SNMP managers decode
and process SNMP trap messages.
iReasoning SNMP agent builder successfully passed all 24,100 tests in
the OUSPG test suite! We conclude that this advisory does not affect
our agent builder.

• VU#854306 - Multiple vulnerabilities in SNMPv1 request handling.
SNMP request messages are sent from managers to agents. Request
messages might be issued to obtain information from an agent or to
instruct the agent to configure the host device. SNMP agents must
properly decode request messages and process the resulting data.
OUSPG found multiple vulnerabilities in the way that many SNMP
agents decode and process SNMP request messages.
Agents developed with our agent builder successfully passed all tests in
the OUSPG test suite! We conclude that this advisory also does not
affect agents built with iReasoning SNMP Agent Builder.

Q. Which versions of SNMP are supported by iReasoning SNMP Agent
Builder?
A. iReasoning SNMP Agent Builder supports SNMPv1, SNMPv2c and
SNMPv3 (USM and VACM).

Q. How's the SNMPv3 support?
A. iReasoning SNMP Agent Builder fully supports SNMPv3, including the
complete USM security model (HMAC-MD5, HMAC-SHA1, HMAC-SHA2,
CBC-DES, CFB128-AES-128, CFB128-AES-192, CFB128-AES-256) and
VACM. It has successfully passed a number of interoperability tests with other
SNMPv3 vendors and their implementations. It is now used as a de facto
reference by other vendors for their SNMPv3 implementations.

Q. Are the agents compatible with JMX 1.2 spec?
A. Agents are compatible with JMX 1.0, 1.1, and 1.2 specs.

Q. Can I use other JMX implementations?
A. Yes. We currently use the MX4J JMX implementation in iReasoning SNMP
Agent Builder, but it also works with other implementations such as the SUN
JMX reference implementation. To switch to other JMX implementations, you
just need to place the appropriate jar file before snmpagent.jar in your
classpath.

Copyright© iReasoning Inc. - 54 -

Q. Can SNMP agent run as a JMX adaptor?
A. iReasoning Agent architecture is based on JMX technology. Agents can run
as standalone applications, as SNMP agent services inside an application, or as
JMX adaptors. Please refer to the example code
examples/agent/mib2/AgentMX4J.java for details. You can use a web
browser connecting to port 8000 to view the currently registered MBeans. (For
instance, if your AgentMX4J runs at localhost, point the browser to
http://localhost:8000)

Q. Can I stop/restart an agent remotely? Can I change an agent's port
number at runtime? Can I change the agent logger's logging level at
runtime?
A. Yes to all these questions. First, you need to start a server which makes
MBeans remotely accessible. One approach is to start an http adaptor such as
HttpAdaptor (included in MX4J) or HtmlAdaptor (included in SUN's JMX
RI), so you can use a web browser to remotely manage agents. Check out the
AgentMX4J.java and JMXAdaptor.java examples for details. Another
approach is to start JRMP of MX4J (the startJRMPAdaptor method in
AgentMX4J.java), which lets you use a client such as MC4J to monitor and
control agents via RMI.

Q. What operating systems does iReasoning SNMP Agent Builder run
on?
A. iReasoning SNMP Agent Builder is written in Java, so it can run on any OS
which has JVM support.

Q. What is AgentX technology?
A. Agent eXtensibility (AgentX) is a standard protocol that meets the very real
need to dynamically extend managed objects in a node. The protocol allows
you to have a single SNMP agent and several subagents, which can connect
and register multiple managed objects without interrupting the management
service.

AgentX is the first IETF standard-track specification for extensible SNMP
agents, and is expected to gradually replace all other agent extensibility
solutions, both open and proprietary (e.g. SMUX, DPI, etc.). For more details
on AgentX, please refer to RFC 2741.

Q. Are master/subagents interoperable with SMUX agents?
A. No. Our master/subagents are based on AgentX, which is a newer
technology not interoperable with SMUX.

Q. Are master/subagents interoperable with subagents and master
agents from other vendors?
A. Master/subagents built with agent builder should be interoperable with
other AgentX-based agents, no matter what language (C, Java, ...) they use.
Net-snmp's snmpd (verion 5+) has been reported to interoperate successfully

Copyright© iReasoning Inc. - 55 -

with our master/subagents. (Note: NET-SNMP's snmpd is a SNMP daemon
written in C, available for the Windows and UNIX platforms)

Q. I understand that your agent is written in Java, so can it
communicate with C/C++ and VB programs?
A. Yes, it is independent of language and platform. It is interoperable with
other SNMP managers as long as they conform to the SNMP protocol, and
with other master/subagents as long as they conform to the AgentX protocol.

Q. Can a subagent connect to multiple master agents?
A. Yes, you just need to create a new SubAgentSession for each master agent.

Q. Can multiple subagents run on one machine?
A. Yes.

Q. How do I migrate code from version 2.x to 3.x?
A. AgentX support is one of the most important new features of 3.x. If you
don't need AgentX support, no code change is required. If you plan to add
master agent or subagent support then you just need to make the agent class
an extension of SnmpAgentX instead of SnmpBaseAgent, and add a few lines of
code to the main method. Check the master and subagent sample code for
details.

There are also some minor changes in the SnmpConfig.xml file. If you need to
dynamically update the config file, you have to replace "trapd" with "trapSink"
and "snmpV3Trapd" with "snmpV3TrapSink".

Q. How do I migrate code from version 3.x to 4.0?
A. iReasoning Agent Builder 4.0 is compatible with 3.x. There is no need to
change your existing code.

Q. What's the difference between a master agent and a proxy forwarder?
A. An SNMP master agent can route parts of an SNMP request to multiple
subagents. The subagents are completely hidden from the SNMP manager,
which only sees the master agent. In a proxy forwarding application, however,
the manager needs to be aware of all proxied agents and target each request to
a single specific subagent. The request also needs to include information that
enables the proxy forwarder application to determine which subagent is the
target of the request.

Q. I don't want to see log messages, can I disable Logger?
A. Yes. Add one line of code:
Logger.setLevel(Logger.NONE);

Q. Can I put config files in a directory other than "./config"?
A. Yes. For instance, if you want your config files in "d:\config", just add one
more java environment variable:
java -Dcom.ireasoning.configDir=d:\config ...

Copyright© iReasoning Inc. - 56 -

Q. I want to use the agent config file to make more information
persistent. Can I add more entries to the agent config file?
A.Yes. You can add more entries to the properties, trapSink, and
snmpV3TrapSink sections. New entries will be loaded and saved automatically.
You can use the SnmpAgentConfig.getProperty and TrapSink.getProperty methods to
retrieve those entries.

Q. When I ran an SNMP agent built with agent builder on Solaris, I got
the error message "BindException: Permission denied". Why?
A.The default agent port number is 161. You need root privilege on UNIX to
run agents on this port. Alternatively, you can modify the port number in the
agent config file.

Q. Can I use log4j for logging instead of your Logger?
A. Yes, please refer to the Logger javadoc for details and a usage example.

Q. How can I integrate iReasoning SNMP agent with JBoss?
A. Check out the Java code and JBoss config file (jboss-service.xml) contained
in jboss.zip. Basically, an MBean is created and registered during JBoss startup.
An SNMP agent is started in this MBean's start method. snmpagent.jar needs
to be included in the classpath of JBoss. For example, it can be put in the
.../server/default/lib directory. The MBeanServer object ("server") must be
passed to the agent's constructor, otherwise a new MBeanServer will be
created during agent startup and JBoss will behave differently.

Q. The passwords are stored in plain text in the config file, and this
could pose a security risk if someone were to casually open them up or
break into a machine that was the DMZ host and also running an agent.
So how can I make passwords encrypted in the config file?
A. All the passwords and community names can be encrypted. To do this, you
need to set encryptPasswordAndCommunity to "yes" in the config file. Enter your
unencrypted passwords and community names. When the agent starts, all these
values will be encrypted and saved to the config file, so that all passwords and
community names are secure.

Q. Does your SNMP Agent Builder support IPv6?
A. Yes, if it's used with J2SDK/JRE 1.4. See "Networking IPv6 User Guide
for J2SDK/JRE 1.4" for more information. As of JVM 1.4.2, supported
operating systems are Solaris (v. 8 and up) and Linux (kernel 2.1.2 and up).

Q. What is the AES standard, and how does 128-bit AES encryption
compare to DES?
A. Excerpt from the NIST (National Institute of Standards and Technology)
website:

"The Advanced Encryption Standard (AES) is a new Federal Information Processing
Standard (FIPS) Publication that will specify a cryptographic algorithm for use by U.S.
Government organizations to protect sensitive (unclassified) information. NIST also

Copyright© iReasoning Inc. - 57 -

anticipates that the AES will be widely used on a voluntary basis by organizations,
institutions, and individuals outside of the U.S. Government - and outside of the United
States - in some cases.

The AES is being developed to replace DES, but NIST anticipates that Triple DES will
remain an approved algorithm (for U.S. Government use) for the foreseeable future. Single
DES is be ing phased out o f use , and is current ly permit ted in l egacy
sys tems, only .

Assuming that one could build a machine that could recover a DES key in a second (i.e., try
255 keys per second), then it would take that machine approximately 149 thousand-billion
(149 trillion) years to crack a 128-bit AES key. To put that into perspective, the universe
is believed to be less than 20 billion years old."

See "The AES Cipher Algorithm in the SNMP User-based Security Model" for
more details on the use of AES in SNMP.

Q. How can I store config settings in a database?
A. Config settings can be stored in XML files, databases, and other data
sources. You just need to create a subclass of DefaultAgentConfig.java, and
implement all the abstract methods. We provide a reference implementation
that stores config settings in a database at DbConfig.java. Config settings are
stored in 8 tables: properties, trapsink, snmpv3trapsink, proxy, trapproxy, user,
v3group, and view. The column names of the tables are the same as those in
the XML config file. The data type of all columns is varchar for the sake of
simplicity.

Q. I have a MIB table which can grow to thousands of rows, so it could
potentially use up all the memory. How can I handle it?
A. For huge tables, it would consume too much memory for all rows to be
stored. First, call setProcessSnmpRequestDirectly(true) to make this table handle
SNMP requests itself. This table then needs to implement the getOID and
getNextOID methods to pass information on the OID tree to the base class.
No corresponding table entry object is created for the rows; each getter
method in the table class fetches data from somewhere else and returns the
appropriate results. Please refer to the example code at
examples/agent/mib2/AtTable.java.

Q. Do I have to write C/C++ code if I want to build a Windows
Extension Agent?
A. No. You only need to write Java code to implement a Java SNMP agent.
The subagent.dll module delegates SNMP requests from the Windows SNMP
service to your Java agent.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 58 -

RESOURCES AND
REFERENCE
__

v iReasoning Home Page

http://www.iReasoning.com/

v SNMP FAQ

http://www.faqs.org/faqs/snmp-faq/part1/

v SNMP RFCs
http://directory.google.com/Top/Computers/Internet/Protocols/SNMP
/RFCs/

v SNMP General Information

http://www.simpleweb.org/

v Understanding SNMP MIBs, David T. Perkins, Prentice Hall PTR, 1997

http://vig.prenhall.com/catalog/academic/product/1,4096,0134377087.h
tml,00.html

v JAVA web site

http://java.com/

v AgentX

http://www.ietf.org/rfc/rfc2741.txt

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 59 -

GLOSSARY OF TERMS
__

JAVA

Java is a programming language expressly designed for use in the
distributed Internet environment. It was designed to have the "look and
feel" of the C++ language, but it is simpler to use than C++ and enforces
an object-oriented programming model.

MBean

A Managed Bean (MBean) is a java object that implements a specific
interface and conforms to certain design patterns. It encapsulates attributes
and operations through their public methods and follows specific design
patterns in exposing them to management applications. JMX defines four
types of MBeans: standard, dynamic, open and model.

MBean Server

An MBean server is a registry for the objects that are exposed to
management operations in an agent. Any object registered with the MBean
server becomes visible to management applications. The MBean server
only exposes an MBean’s management interface, however, never its direct
object reference.

MIB

A management information base (MIB) is a formal description of a set of
network objects that can be managed using the Simple Network
Management Protocol (SNMP). The format of the MIB is defined as part
of the SNMP. (All other MIBs are extensions of this basic management
information base.) MIB-I refers to the initial MIB definition, and MIB-II
refers to the current definition. SNMPv2 includes MIB-II and adds some
new objects.

OID

An Object Identifier (OID) is a text string that can be represented in either
decimal or English notation. Every OID element represents a branch on a
tree. The tree begins with the root which is represented by a ‘.’. The root
contains several branches below it. Each of these branches in turn has sub-
branches beneath it. Branches at every level are labeled with a text name
and an unsigned decimal identifier.

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 60 -

PDU

A Protocol Data Unit (PDU) is basically a fancy word for a packet. PDUs
are the building blocks of SNMP messages.

SNMP

Simple Network Management Protocol (SNMP) is the protocol governing
network management and the monitoring of network devices and their
functions. SNMP is described formally in the Internet Engineering Task
Force (IETF) Request for Comment (RFC) 1157 and in a number of other
related RFCs.

TCP

TCP (Transmission Control Protocol) is a set of rules (protocol) used
along with the Internet Protocol (IP) to send data in the form of message
units between computers over the Internet. While IP takes care of handling
the actual delivery of the data, TCP keeps track of the individual data units
(packets) that a message is divided into for efficient routing through the
Internet. TCP is known as a connection-oriented protocol, which means
that a connection is established and maintained until such time as the
message or messages to be exchanged by the application programs at each
end have been exchanged.

Transport Layer

In the Open Systems Interconnection (OSI) communications model, the
Transport layer ensures the reliable arrival of messages and provides error
checking mechanisms and data flow controls. The Transport layer provides
services for both "connection mode" transmissions and for
"connectionless mode" transmissions. In connection mode, a transmission
may be sent or arrive in the form of packets that must be reconstructed
into a complete message at the other end.

TRAP

A trap is basically an asynchronous notification sent from an SNMP agent
to a network management station to report a problem or significant event.
Like everything else in SNMP, traps are sent using UDP (port 162) and are
therefore unreliable. This means that the sender cannot assume that the
trap actually arrives, nor can the destination assume that it's getting all the
traps being sent its way.

UDP

UDP (User Datagram Protocol) is a communications protocol that offers a
limited amount of service when messages are exchanged between
computers in a network that uses the Internet Protocol (IP). UDP is an
alternative to the Transmission Control Protocol (TCP) and, together with

I R E A S O N I N G S N M P A G E N T B U I L D E R

Copyright© iDeskCentric Inc. - 61 -

IP, is sometimes referred to as UDP/IP. Like the Transmission Control
Protocol, UDP uses the Internet Protocol to actually get a data unit (called
a datagram) from one computer to another. Unlike TCP, however, UDP
does not provide the service of dividing a message into packets (datagrams)
and reassembling it at the other end.

SMUX

SNMP Multiplexer Protocol. One of the open, extensible SNMP agent
solutions prior to AgentX.

DPI

SNMP Distributed Protocol Interface. One of the open, extensible SNMP
agent solutions prior to AgentX.

AgentX

Agent eXtensibility Protocol was proposed in 1998 as an evolution of DPI.
It enhances several technical aspects of DPI and handles different versions
of the SNMP protocol. It is the first IETF standard-track specification for
extensible SNMP agents, and is expected to gradually replace all other
open and proprietary solutions.

